Agrobacterium tumefaciens SEBAGAI AGEN REKAYASA GENETIKA: MEKANISME, KEUNGGULAN DAN TANTANGAN DALAM TRANSFORMASI GENETIK TANAMAN
Abstract
Agrobacterium tumefaciens merupakan bakteri tanah Gram-negatif yang dikenal sebagai agen rekayasa genetika alami karena kemampuannya mentransfer DNA ke dalam sel tanaman. Kemampuan ini dimediasi oleh plasmid Ti yang memungkinkan integrasi DNA asing secara stabil ke dalam genom tanaman inang. Bakteri ini telah banyak dimanfaatkan dalam bioteknologi pertanian untuk menghasilkan tanaman transgenik dengan sifat unggul, seperti ketahanan terhadap hama, penyakit dan cekaman lingkungan. Keunggulan A. tumefaciens terletak pada efisiensi transformasi yang tinggi, spesifisitas terhadap tanaman tertentu serta stabilitas ekspresi gen yang baik. Meskipun demikian, terdapat beberapa tantangan dalam penggunaannya seperti keterbatasan jangkauan inang dan tingkat keberhasilan transformasi yang bervariasi antar spesies tanaman. Untuk mengatasi kendala tersebut, berbagai strategi telah dikembangkan termasuk penggunaan super-Agrobacterium, rekayasa plasmid Ti dan pendekatan biologi sintetis. Dengan perkembangan teknologi bioteknologi, pemanfaatan A. tumefaciens di masa depan diharapkan semakin luas dan berkontribusi dalam pengembangan varietas tanaman unggul yang lebih adaptif terhadap perubahan lingkungan serta mendukung ketahanan pangan global.
Downloads
References
Agrawal, S. E. R. (2022). A review: Agrobacterium-mediated gene transformation to increase plant productivity. J Phytopharm, 11, 111-117.
Aliashkevich, A., & Cava, F. (2022). LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. The FEBS journal, 289(16), 4718–4730.
Aliu, E., Lee, K., & Wang, K. (2022). CRISPR RNA‐guided integrase enables high‐efficiency targeted genome engineering in Agrobacterium tumefaciens. Plant Biotechnology Journal, 20, 1916 - 1927. https://doi.org/10.1111/pbi.13872.
Anjanappa, R. B., & Gruissem, W. (2021). Current progress and challenges in crop genetic transformation. Journal of Plant Physiology, 261, 153411.
Belanger, J. G., Copley, T. R., Hoyos-Villegas, V., Charron, J. B., & O’Donoughue, L. (2024). A comprehensive review of in planta stable transformation strategies. Plant Methods, 20(1), 79.
Bennur, P. L., O’Brien, M., Fernando, S. C., & Doblin, M. S. (2025). Improving transformation and regeneration efficiency in medicinal plants: insights from other recalcitrant species. Journal of Experimental Botany, 76(1), 52-75.
Brown, P. J. B., Chang, J. H., & Fuqua, C. (2023). Agrobacterium tumefaciens: a Transformative Agent for Fundamental Insights into Host-Microbe Interactions, Genome Biology, Chemical Signaling, and Cell Biology. Journal of Bacteriology. 205(4), 1-14.
Cameron, T. A., Anderson-Furgeson, J., Zupan, J. R., Zik, J. J., & Zambryski, P. C. (2014). Peptidoglycan synthesis machinery in Agrobacterium tumefaciens during unipolar growth and cell division. mBio, 5(3), e01219-14.
Christie, P. J., & Gordon, J. E. (2014). The Agrobacterium Ti Plasmid. Microbiol Spectr. 2(6), 1-29.
Cody, J. P., Maher, M. F., Nasti, R. A., Starker, C. G., Chamness, J. C., & Voytas, D. F. (2023). Direct delivery and fast-treated Agrobacterium co-culture (Fast-TrACC) plant transformation methods for Nicotiana benthamiana. Nature Protocols, 18(1), 81-107.
De Saeger, J., Park, J., Chung, H. S., Hernalsteens, J. P., Van Lijsebettens, M., Inzé, D., ... & Depuydt, S. (2021). Agrobacterium strains and strain improvement: Present and outlook. Biotechnology advances, 53, 107677.
Dominguez, M., Padilla, C., & Mandadi, K. (2022). A versatile Agrobacterium-based plant transformation system for genetic engineering of diverse citrus cultivars. Frontiers in Plant Science, 13.
Faisal, S. M., Haque, M. S., Nasiruddin, K. M., & Rownok, N. F. (2024). Genetic Transformation in Cucumber as Influenced by Inoculation Time and Co-cultivation Period. International Journal of Advance Research and Innovation (IJARI, 2347-3258), 12(4), 33-39.
Figueroa-Cuilan, W. M., Howell, M., Richards, C., Randich, A., Yadav, A. K., Cava, F., & Brown, P. J. (2022). Induction of AmpC-mediated β-lactam resistance requires a single lytic transglycosylase in Agrobacterium tumefaciens. Applied and Environmental Microbiology, 88(12), e00333-22.
Groenewold, M. K., Hebecker, S., Fritz, C., Czolkoss, S., Wiesselmann, M., Heinz, D. W., & Moser, J. (2019). Virulence of Agrobacterium tumefaciens requires lipid homeostasis mediated by the lysyl‐phosphatidylglycerol hydrolase AcvB. Molecular microbiology, 111(1), 269-286.
Hooykaas, M. J., & Hooykaas, P. J. (2025). Crown Gall Induced by a Natural Isolate of Brucella (Ochrobactrum) pseudogrignonense Containing a Tumor-Inducing Plasmid. Microorganisms, 13(1), 102.
Hooykaas, P. J. (2023). The Ti plasmid, driver of Agrobacterium pathogenesis. Phytopathology, 113(4), 594-604.
Howell, M., Aliashkevich, A., Sundararajan, K., Daniel, J. J., Lariviere, P. J., Goley, E. D., Cava, F., & Brown, P. J. B. (2019). Agrobacterium tumefaciens divisome proteins regulate the transition from polar growth to cell division. Molecular microbiology, 111(4), 1074–1092.
Hwang, H. H., Yu, M., & Lai, E. M. (2017). Agrobacterium-mediated plant transformation: biology and applications. The arabidopsis book, 15, e0186.
Jawad & Wijayanti, N. (2021). Agrobacterium-Mediated Transformation Improvement in Tomato. Journal of Biology and Today’s World. 10(5), 1-4.
Jeong, J., Jeon, E., Hwang, M., Song, Y., & Kim, J. (2024). Development of super-infective ternary vector systems for enhancing the Agrobacterium-mediated plant transformation and genome editing efficiency. Horticulture Research, 11.
Kang, B., Maeshige, T., Okamoto, A., Kataoka, Y., Yamamoto, S., Rikiishi, K., & Suzuki, K. (2020). The presence of the hairy-root-disease-inducing (Ri) plasmid in wheat endophytic rhizobia explains a pathogen reservoir function of healthy resistant plants. Applied and environmental microbiology, 86(17), e00671-20.
Kaur, R. P., & Devi, S. (2019). In planta transformation in plants: a review. Agricultural Reviews, 40(3), 159-174.
Khatun, M., Borphukan, B., Alam, I., Keya, C., Reddy, M., Khan, H., & Salimullah, M. (2021). An improved Agrobacterium mediated transformation and regeneration protocol for successful genetic engineering and genome editing in eggplant. Scientia Horticulturae.
Kuo, W. H., Hung, Y. L., Wu, H. W., Pan, Z. J., Hong, C. Y., & Wang, C. N. (2018). Shoot regeneration process and optimization of Agrobacterium-mediated transformation in Sinningia speciosa. Plant Cell, Tissue and Organ Culture (PCTOC), 134, 301-316.
Lacroix, B., & Citovsky, V. (2019). Pathways of DNA transfer to plants from Agrobacterium tumefaciens and related bacterial species. Annual review of phytopathology, 57(1), 231-251.
Lacroix, B., & Citovsky, V. (2022). Genetic factors governing bacterial virulence and host plant susceptibility during Agrobacterium infection. Advances in genetics, 110, 1.
Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., Gai, J., & Li, Y. (2017). Optimization of Agrobacterium-Mediated Transformation in Soybean. Frontiers in Plant Science, 8.
Lin, C. Y., Donohoe, B. S., Ahuja, N., Garrity, D. M., Qu, R., Tucker, M. P., & Wei, H. (2017). Evaluation of parameters affecting switchgrass tissue culture: toward a consolidated procedure for Agrobacterium-mediated transformation of switchgrass (Panicum virgatum). Plant Methods, 13, 1-19.
Nahirnak, V., Almasia, N. I., González, M. N., Massa, G. A., Décima Oneto, C. A., Feingold, S. E., ... & Vazquez Rovere, C. (2022). State of the art of genetic engineering in potato: from the first report to its future potential. Frontiers in Plant Science, 12, 768233.
Nicolia, A., Manzo, A., Veronesi, F., & Rosellini, D. (2014). An overview of the last 10 years of genetically engineered crop safety research. Critical reviews in biotechnology, 34(1), 77-88.
Nonaka, S., Someya, T., Kadota, Y., Nakamura, K., & Ezura, H. (2019). Super-Agrobacterium ver. 4: improving the transformation frequencies and genetic engineering possibilities for crop plants. Frontiers in plant science, 10, 1204.
Nonaka, S., Someya, T., Zhou, S., Takayama, M., Nakamura, K., & Ezura, H. (2017). An Agrobacterium tumefaciens Strain with Gamma-Aminobutyric Acid Transaminase Activity Shows an Enhanced Genetic Transformation Ability in Plants. Scientific Reports, 7.
Ouyang, C., Jin, X., Guo, Q., Luo, S., Zheng, Y., Zou, J., & Li, D. (2024). Highly Efficient Agrobacterium tumefaciens Mediated Transformation of Oil Palm Using an EPSPS-Glyphosate Selection System. Plants, 13(23), 3343.
Safitri, F. A., Ubaidillah, M., & Kim, K. M. (2016). Efficiency of transformation mediated by Agrobacterium tumefaciens using vacuum infiltration in rice (Oryza sativa L.). Journal of Plant Biotechnology, 43(1), 66-75.
Sandhya, D., Jogam, P., Venkatapuram, A. K., Savitikadi, P., Peddaboina, V., Allini, V. R., & Abbagani, S. (2022). Highly efficient Agrobacterium-mediated transformation and plant regeneration system for genome engineering in tomato. Saudi Journal of Biological Sciences, 29(6), 103292.
Schropfer, S., Lempe, J., Emeriewen, O., & Flachowsky, H. (2022). Recent Developments and Strategies for the Application of Agrobacterium-Mediated Transformation of Apple Malus × domestica Borkh. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.928292.
Shivashakarappa, K., Marriboina, S., Dumenyo, K., Taheri, A., & Yadegari, Z. (2025). Nanoparticle-mediated gene delivery techniques in plant systems. Frontiers in Nanotechnology, 7
Silalahi, D. A. R. W. I. N., Wirawan, I. G. P., & Sritamin, M. A. D. E. (2021). Transformasi genetik tanaman kentang (Solanum tuberosum L.) dengan gen acvb menggunakan vektor Agrobacterium tumefaciens. Agrotrop: Journal on Agriculture Science, 11(1), 63.
Subramoni, S., Nathoo, N., Klimov, E., & Yuan, Z. C. (2014). Agrobacterium tumefaciens responses to plant-derived signaling molecules. Frontiers in plant science, 5, 322.
Sunday, G., Nwaneri, G., Ugwu, C. M., Onyekachi, O. I., Ruth, C. C., Ebenene, I. N., Nedum, C. H. Oli, A. N. (2024). Agrobacterium tumefaciens: Biology and application in genetic engineering. GSC Advanced Research and Reviews, 2024, 20(01), 389–398
Swartwood, K., & Eck, J. V (2019). Development of plant regeneration and Agrobacterium tumefaciens-mediated transformation methodology for Physalis pruinosa. Plant Cell, Tissue and Organ Culture (PCTOC), 137, 465-472.
Thompson, M. G., Moore, W. M., Hummel, N. F. C., Pearson, A. N., Barnum, C. R., Scheller, H. V., & Shih, P. M. (2020). Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology. BioDesign Research, 1-16.
Tiwari, M., Mishra, A. K., Chakrabarty, D. (2022). Agrobacterium‑mediated gene transfer: recent advancements and layered immunity in plants. Planta, 256(2), 21-13.
Udayabhanu, J., Huang, T., Xin, S., Cheng, J., Hua, Y., & Huang, H. (2022). Optimization of the transformation protocol for increased efficiency of genetic transformation in Hevea brasiliensis. Plants, 11(8), 1067.
Vats, S., Kaur, S., Chauhan, A., Biswas, D. K., & Deshmukh, R. (2024). Advancement in Delivery Systems and Vector Selection for CRISPR/Cas‐Mediated Genome Editing in Plants. Applications of Genome Engineering in Plants, 52-77.
Wang, P., Si, H., Li, C., Xu, Z., Guo, H., Jin, S., & Cheng, H. (2025). Plant genetic transformation: achievements, current status and future prospects. Plant Biotechnology Journal.
Weir, R., & Dalzell, J. (2020). Agrobacterium: Soil Microbe, Plant Pathogen, and Natural Genetic Engineer. 8. https://doi.org/10.3389/frym.2020.00064.
Xia, Y., Cao, Y., Ren, Y., Ling, A., Du, K., Li, Y., & Kang, X. (2023). Effect of a suitable treatment period on the genetic transformation efficiency of the plant leaf disc method. Plant Methods, 19(1), 15.
Ye, X., Shrawat, A., Moeller, L., Rode, R., Rivlin, A., Kelm, D., & Armstrong, C. L. (2023). Agrobacterium-mediated direct transformation of wheat mature embryos through organogenesis. Frontiers in Plant Science, 14, 1202235.
Zhang, Y., Lee, C. W., Wehner, N., Imdahl, F., Svetlana, V., Weiste, C., & Deeken, R. (2015). Regulation of oncogene expression in T-DNA-transformed host plant cells. PLoS pathogens, 11(1), e1004620.